Northwestern University Feinberg School of Medicine



# Third Coast CFAR: Core Services in Data and Computational Sciences

### **Measurement in Behavioral HIV Research**

**Patrick Janulis** 

**Assistant Professor** 



Northwestern

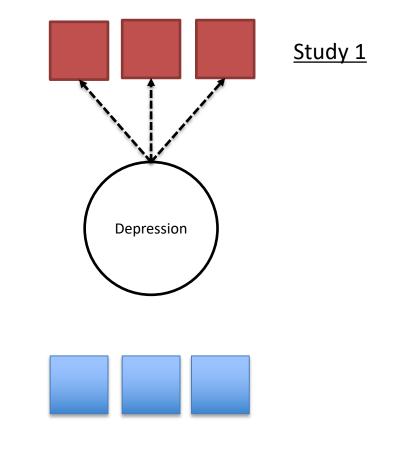




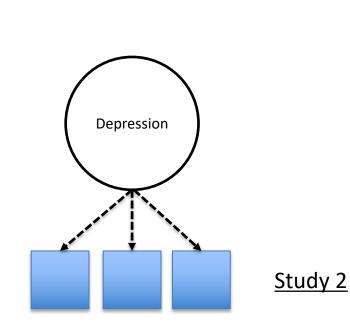
Institute for Sexual and Gender Minority Health and Wellbeing

CONNECT Complex Systems and Health Disparities Research Program

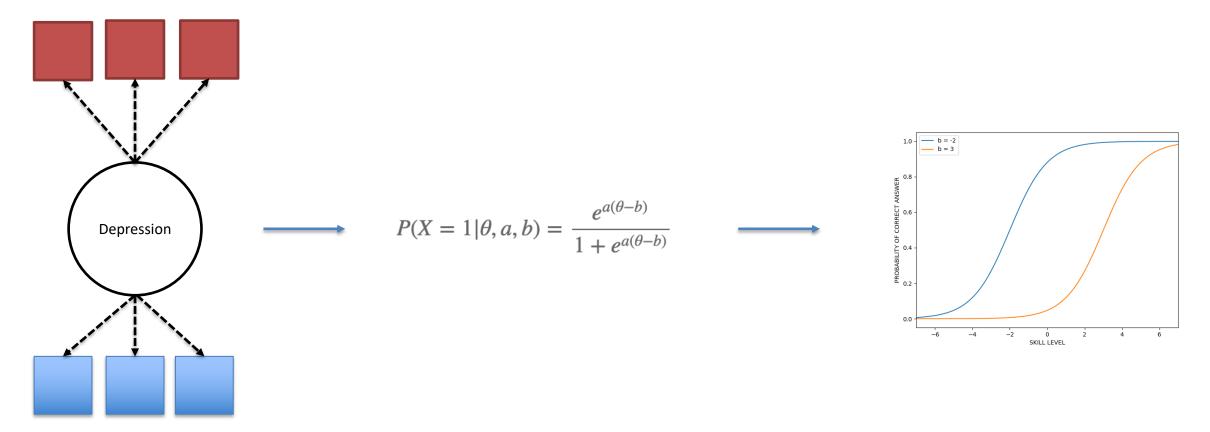
# Core Services in Data and Computational Sciences

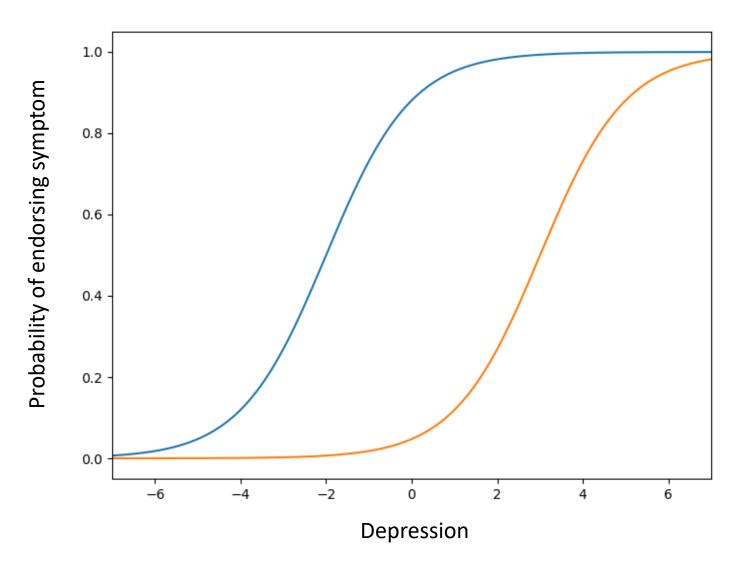

- Traditional
  - Design and analysis planning
  - Power analysis
- Advanced
  - Psychometrics
  - Social network analysis
  - Geographic information systems (GIS)
  - Agent-based modeling (ABMs)
  - Machine learning / data science
  - High performance computing




# Measurement in Behavioral HIV research

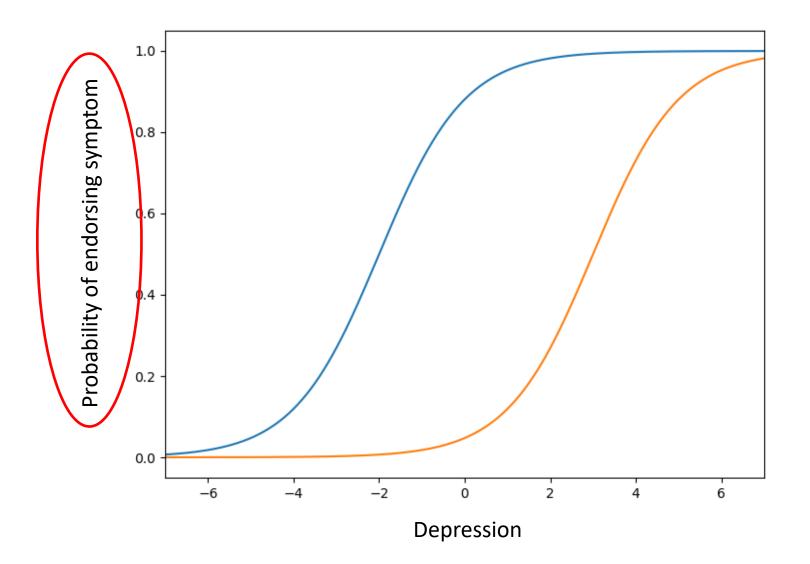
- Multiple groups at risk for HIV (e.g., PWID, MSM)
- Studies often focus on single group or subgroup
- Share common pathways and risk factors for transmission
- Difficult to identify common and unique risk factors across groups without unified measurement

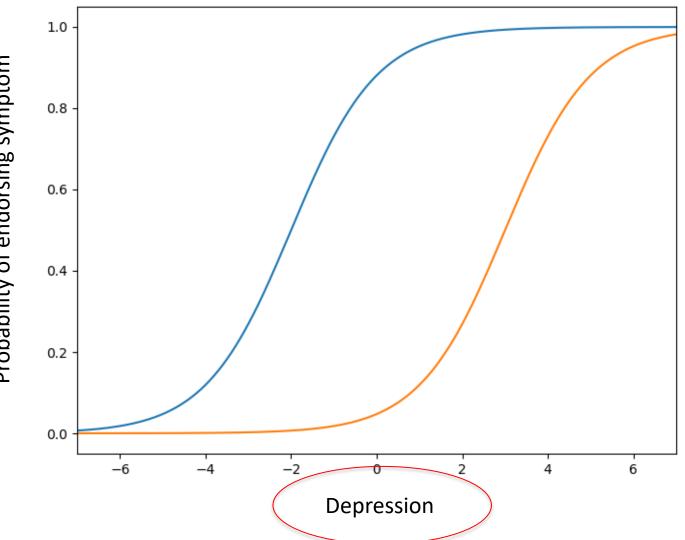

- Data harmonization across studies limited by measurement differences
- Difference scales, phrasing, response options, or data collection methods
- Psychometrics (IRT) can be used to convert scores to translate across questionnaires
- Commonly used for comparing depression: CESD, PHQ9, and PROMIS




- Data harmonization across studies limited by measurement differences
- Difference scales, phrasing, response options, or data collection methods
- Psychometrics (IRT) can be used to convert scores to translate across questionnaires
- Commonly used for comparing depression: CESD, PHQ9, and PROMIS




Study 3

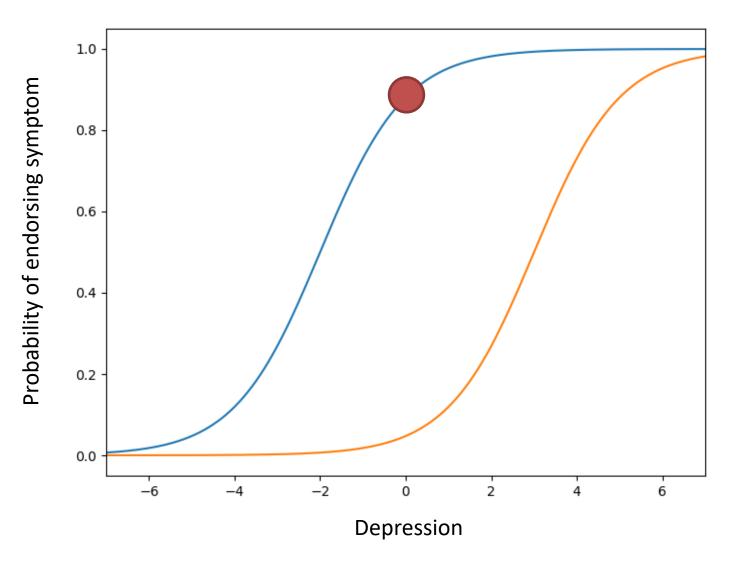





Northwestern

#### 7

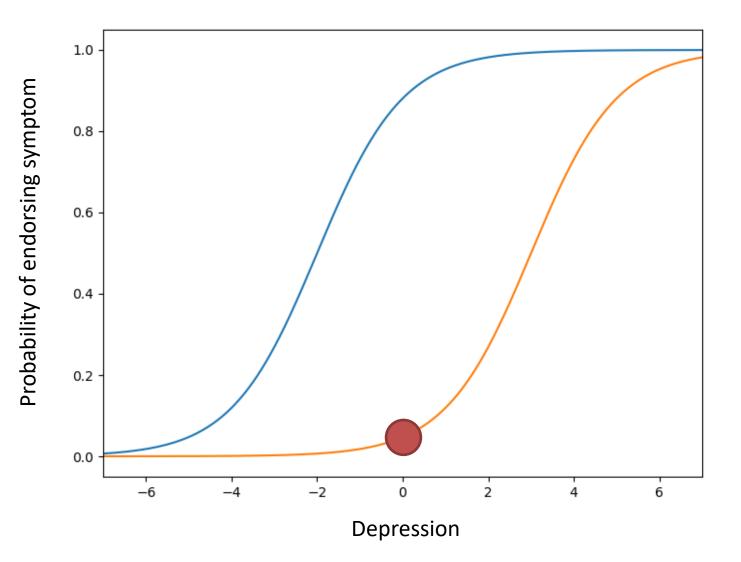


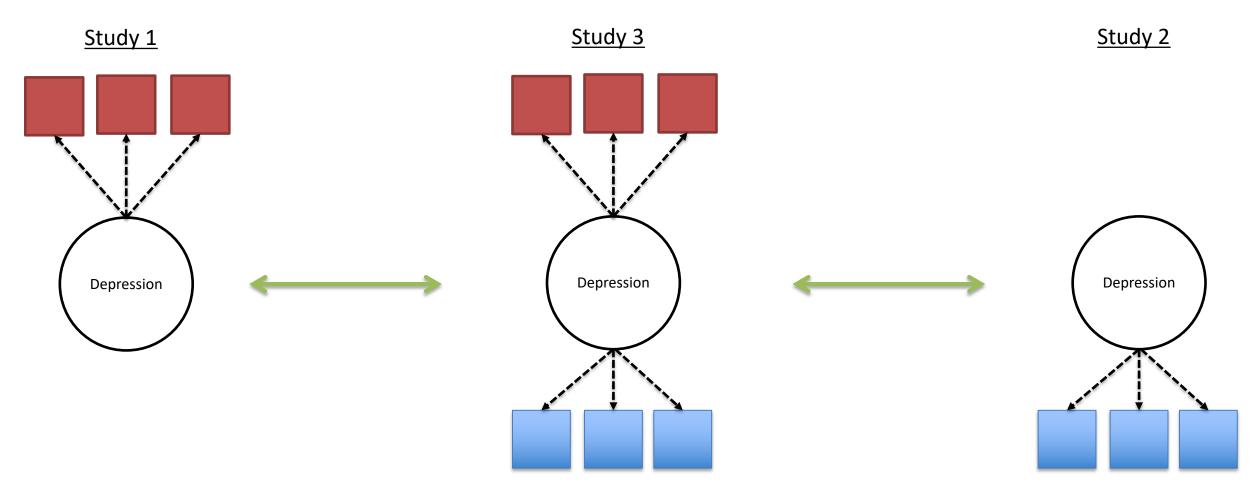



Probability of endorsing symptom

#### Northwestern

9


Low self-esteem




Northwestern

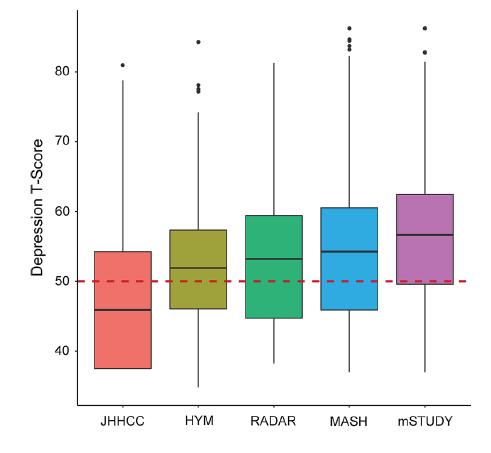
10

Suicidal ideation





Check fo


AIDS and Behavior https://doi.org/10.1007/s10461-020-02883-5

**ORIGINAL PAPER** 

#### **Psychometric Data Linking Across HIV and Substance Use Cohorts**

Benjamin D. Schalet<sup>1</sup> · Patrick Janulis<sup>1,3</sup> · Michele D. Kipke<sup>2</sup> · Brian Mustanski<sup>1,3</sup> · Steven Shoptaw<sup>4</sup> · Richard Moore<sup>5</sup> · Marianna Baum<sup>6</sup> · Soyeon Kim<sup>7</sup> · Suzanne Siminski<sup>7</sup> · Amy Ragsdale<sup>8</sup> · Pamina M. Gorbach<sup>8,9</sup>





# C3PNO and CFAR Supplements



- Alcohol, Smoking, and Substance Involvement Screen Test (ASSIST)
- Administering 2 different versions of ASSIST in three studies to enable comparisons across larger consortium
- Administer both version to 3 cohorts (JHHC, mSTUDY, ACCESS/V-DUS)
- Compare different time-frames, mode of administration (CASI vs. Face-to-face)

Supplement to U24 DA044554



- ASSIST, Drug Abuse Screening Test (DAST-10), and PROMIS Substance use severity
- Position PROMIS measure as common metric
- Administer all 3 measures to 5,000 participants from an online panel study
- Enable comparisons across cohorts and future studies that use only one of these measures

Supplement to P30 AI117943

# HIV Knowledge and CAS

Arch Sex Behav (2018) 47:107–119 https://doi.org/10.1007/s10508-016-0910-4

ORIGINAL PAPER

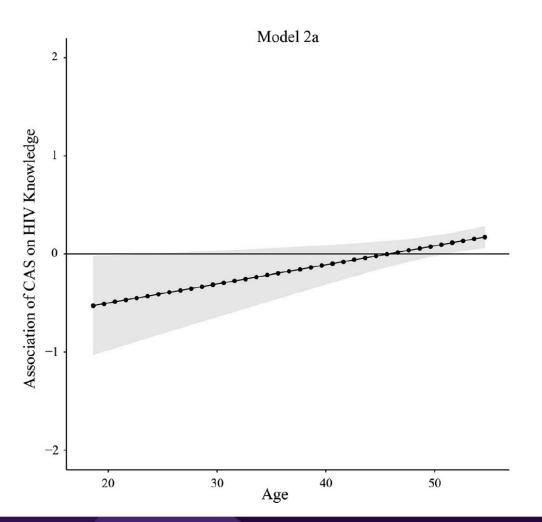
#### Evaluating HIV Knowledge Questionnaires Among Men Who Have Sex with Men: A Multi-Study Item Response Theory Analysis

Patrick Janulis<sup>1</sup> · Michael E. Newcomb<sup>1</sup> · Patrick Sullivan<sup>2</sup> · Brian Mustanski<sup>1</sup>

| Table 2 I | tems and study |
|-----------|----------------|
|-----------|----------------|

CrossMark

|    | Question                                                                                                                                    | %<br>correct | Crew<br>450 | KIU!<br>1.0 | TRACK | InvolveMENt | InvolveMENt<br>Pilot | KIU!<br>2.0 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-------------|-------|-------------|----------------------|-------------|
| 1  | Coughing and sneezing do NOT spread HIV                                                                                                     | 83.2         | Х           | Х           | Х     | Х           | Х                    |             |
| 2  | A person can get HIV by sharing a glass of water with someone who has HIV                                                                   | 90.4         | х           | Х           | X     | х           | х                    |             |
| 3  | Pulling out the penis before a male climaxes/cums keeps a person from getting $\ensuremath{\mathrm{HIV}}$                                   | 87.7         | х           | Х           | Х     | Х           | Х                    | Х           |
| 4  | A person can get HIV from having anal sex                                                                                                   | 90.9         | Х           | Х           | Х     |             | X                    | Х           |
| 5  | Showering or washing one's genitals/private parts after sex keeps a person from getting HIV                                                 | 88.8         | х           | Х           | Х     | Х           | Х                    |             |
| 6  | All pregnant females infected with HIV will have babies born with HIV [or AIDS]                                                             | 69.1         | х           |             | Х     | х           | х                    |             |
| 7  | People who have been infected with HIV quickly show serious signs of being infected                                                         | 91.4         | х           | Х           | Х     | х           | х                    | Х           |
| 8  | There is a vaccine that can stop people (or adults) from getting HIV                                                                        | 80.5         | Х           | Х           | Х     | X           | X                    | Х           |
| 9  | People are likely to get HIV by deep kissing, putting their tongue in a partner's mouth, if their partner has HIV [and cuts in their mouth] | 65.4         | х           | Х           | Х     | Х           | Х                    | Х           |
| 10 | It is possible to get HIV when a person gets a tattoo if the equipment is not properly cleaned                                              | 82.7         | х           | Х           | X     |             |                      |             |
| 11 | Using a latex condom or rubber can lower a person's chance of getting HIV                                                                   | 93.9         | х           | Х           | Х     |             |                      | Х           |
| 12 | A natural skin [lamb skin] condom works better against HIV than does a latex condom                                                         | 59.5         | x           | Х           | X     | х           | Х                    | X           |


# HIV Knowledge and CAS

Arch Sex Behav (2018) 47:107–119 https://doi.org/10.1007/s10508-016-0910-4 CrossMark

#### ORIGINAL PAPER

#### Evaluating HIV Knowledge Questionnaires Among Men Who Have Sex with Men: A Multi-Study Item Response Theory Analysis

Patrick Janulis<sup>1</sup> · Michael E. Newcomb<sup>1</sup> · Patrick Sullivan<sup>2</sup> · Brian Mustanski<sup>1</sup>



# **IRT** and Injection Behavior

The American Journal of Drug and Alcohol Abuse

http://informahealthcare.com/ada ISSN: 0095-2990 (print), 1097-9891 (electronic) Am J Drug Alcohol Abuse, 2014; 40(2): 143-150 © 2014 Informa Healthcare USA, Inc. DOI: 10.3109/00952990.2013.848212

informa

healthcare

ORIGINAL ARTICLE

Improving measurement of injection drug risk behavior using item response theory

Patrick Janulis, MS

|          | Item |                                                     |
|----------|------|-----------------------------------------------------|
| 6 months | 1    | Used a dirty syringe                                |
|          | 2    | Used a previously used cooker, cotton or risk water |
|          | 3    | Shared the same "works"                             |
| 30 days  | 4    | Injected in last 30 days                            |
| -        | 5    | Shared dirty needles                                |
|          | 6    | Used previously used cooker, cotton or risk water   |
|          | 7    | Injected with other people                          |
|          | 8    | Shared the same "works"                             |
|          | 9    | Give or loan used needles without cleaning          |
| Ever     | 10   | Share works with HIV+ partner                       |

Table 3. Male/female model parameters and differential item functioning statistic.

|      | $\beta$ |        |        | α       |        |        |             |
|------|---------|--------|--------|---------|--------|--------|-------------|
| Item | Overall | Male   | Female | Uniform | Male   | Female | Non-uniform |
| 1    | 0.49    | 0.717  | 0.025  | 0.34    | 13.395 | 5.124  | 0.15        |
| 2    | 5.33    | 0.596  | -0.318 | 4.74*   | 3.580  | 4.332  | 0.58        |
| 3    | 2.53    | 0.445  | -0.541 | 2.51    | 6.892  | 20.547 | 0.03        |
| 5    | 3.86    | 0.868  | 0.261  | 1.11    | 4.495  | 6.109  | 2.75        |
| 6    | 9.78**  | 0.697  | -0.168 | 7.53**  | 14.505 | 3.156  | 2.25        |
| 7    | 0.88    | -0.550 | -0.861 | 0.83    | 1.179  | 1.933  | 0.05        |
| 8    | 10.65** | 0.659  | -0.170 | 3.75    | 34.251 | 4.828  | 6.90**      |
| 9    | 1.78    | 1.150  | 0.454  | 0.57    | 1.162  | 1.570  | 1.21        |
| 10   | 0.46    | 4.965  | 4.322  | 0.43    | 0.700  | 0.631  | 0.03        |

\**p*<0.05, \*\**p*<0.01

# **IRT** and Injection Behavior

The American Journal of Drug and Alcohol Abuse

http://informahealthcare.com/ada ISSN: 0095-2990 (print), 1097-9891 (electronic) Am J Drug Alcohol Abuse, 2014; 40(2): 143-150 © 2014 Informa Healthcare USA, Inc. DOI: 10.3109/00952990.2013.848212

informa healthcare

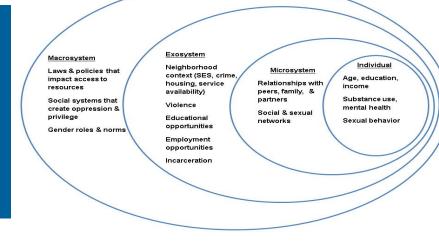
ORIGINAL ARTICLE

Improving measurement of injection drug risk behavior using item response theory

Patrick Janulis, MS

|          | Item |                                                     |
|----------|------|-----------------------------------------------------|
| 6 months | 1    | Used a dirty syringe                                |
|          | 2    | Used a previously used cooker, cotton or risk water |
|          | 3    | Shared the same "works"                             |
| 30 days  | 4    | Injected in last 30 days                            |
| •        |      | Shared dirty needles                                |
|          | 6    | Used previously used cooker, cotton or risk water   |
|          | 7    | Injected with other needle                          |
|          | 8    | Shared the same "works"                             |
|          | 9    | Give or loan used needles without cleaning          |
| Ever     | 10   | Share works with HIV+ partner                       |

Table 3. Male/female model parameters and differential item functioning statistic.

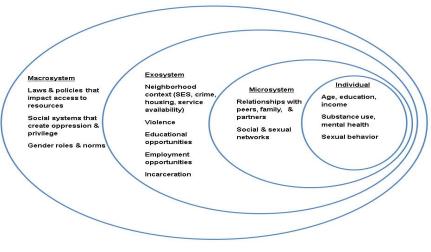

|      |         | $\beta$ |        |         | α      |        |             |
|------|---------|---------|--------|---------|--------|--------|-------------|
| Item | Overall | Male    | Female | Uniform | Male   | Female | Non-uniform |
| 1    | 0.49    | 0.717   | 0.025  | 0.34    | 13.395 | 5.124  | 0.15        |
| 2    | 5.33    | 0.596   | -0.318 | 4.74*   | 3.580  | 4.332  | 0.58        |
| 3    | 2.53    | 0.445   | -0.541 | 2.51    | 6.892  | 20.547 | 0.03        |
| 5    | 3.86    | 0.868   | 0 261  | 1 1 1   | 4.495  | 6.109  | 2.75        |
| 6    | 9.78**  | 0.697   | -0.168 | 7.53**  | 14.505 | 3.156  | 2.25        |
| 7    | 0.88    | -0.550  | -0.861 | 0.83    | 1.179  | 1.933  | 0.05        |
| 8    | 10.65** | 0.659   | -0.170 | 3.75    | 34.251 | 4.828  | 6.90**      |
| 9    | 1.78    | 1.150   | 0.454  | 0.57    | 1.162  | 1.570  | 1.21        |
| 10   | 0.46    | 4.965   | 4.322  | 0.43    | 0.700  | 0.631  | 0.03        |

\**p*<0.05, \*\**p*<0.01

UNDERSTANDING SOCIO-STRUCTURAL DRIVERS OF HIV TRANSMISSION USING EPIDEMIOLOGY AND SYSTEMS SCIENCE

#### ANNA HOTTON, PHD, MPH

Research Assistant Professor Department of Medicine Chicago Center for HIV Elimination University of Chicago, Chicago IL








### **RESEARCH FOCUS**

- Socio-structural & contextual influences
  - Dyad-level factors, serosorting
  - Network influences, environmental context
  - Outcomes: HIV/STI transmission risk, substance use, prevention and care engagement
- Populations disproportionately affected by HIV/STIs
  - MSM, transgender people, people who use drugs



Adapted from Ecological Systems Theory. Source: Bronfenbrenner, U. (1979). *The Ecology of Human Development: Experiments by Nature and Design*. Cambridge, MA: Harvard University Press.



### METHODS

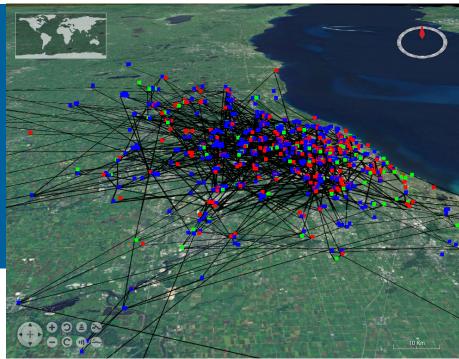
- Applications of quantitative methods in epidemiology and the social sciences
  - Epidemiologic study design, sampling, survey design
  - Causal inference methods
  - Analytic methods for clustered and longitudinal data: multilevel models, survival analysis, network analysis
  - Combining estimates from multiple sources: meta-analysis
- Applications in systems science
  - Useful for representing complex relationships characterized by: direct and indirect effects, feedback loops, dynamic changes, interference
  - Estimates from traditional epidemiologic analyses can be used as input parameters for agent-based models



### USES OF AGENT-BASED MODELING IN EPIDEMIOLOGY

- Understand mechanisms by which socio-structural factors impact population level health outcomes
  - Can show how patterns at the population level arise from exposures that might not be evident in a single study
  - Conduct counterfactual experiments to evaluate different hypotheses
- Evaluate potential intervention strategies
  - Streamline intervention development process
  - Guidance as to:
    - How interventions can be most effectively focused
    - Optimal combination/sequence of interventions





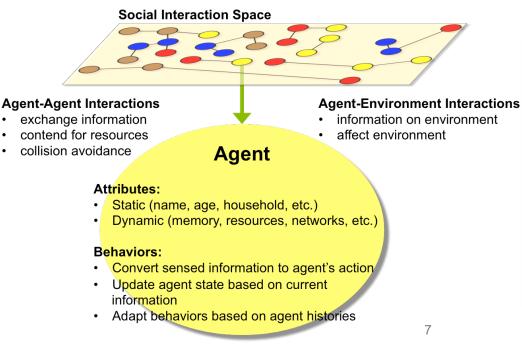


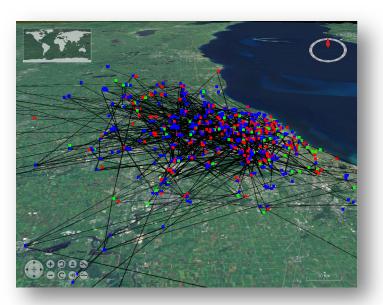

AGENT-BASED MODELING AND HIGH-PERFORMANCE COMPUTING FOR PUBLIC HEALTH APPLICATIONS

JONATHAN OZIK, PH.D.

Argonne National Laboratory University of Chicago




### **AGENT-BASED MODELING**




### **AGENT-BASED MODELS (ABMS)**

#### Disaggregated description of complex systems:

- Method of computing the potential system-level consequences of the behaviors of sets of individuals
- Effects of interventions can be run with different assumptions







### **REPAST ABM TOOLKIT**



### **REPAST AGENT-BASED MODELING SUITE** •repast The Repast Suite https://repast.github.io

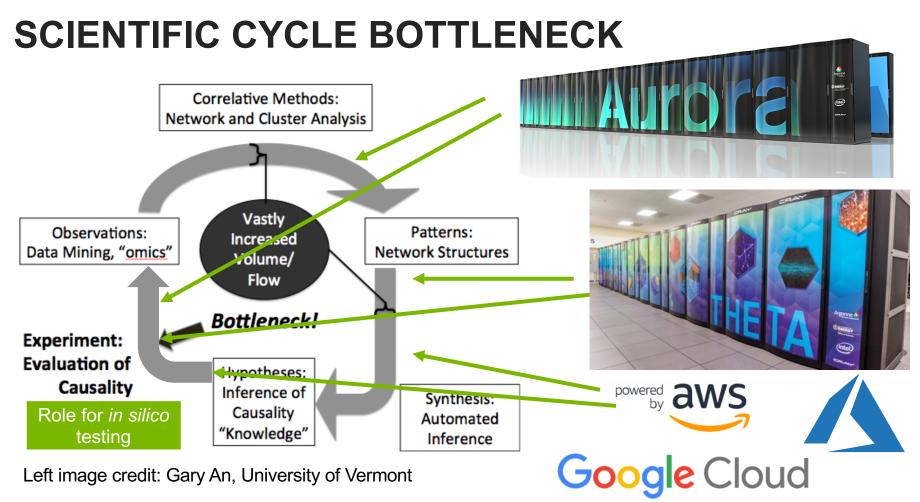
- Family of advanced, free, and open source agentbased modeling and simulation platforms that have collectively been under continuous development for over 20 years
- Over 200,000 downloads globally
- Developed and maintained at Argonne
- Two flavors of agent-based modeling toolkits
  - Repast Simphony
  - Repast for High Performance Computing (Repast HPC)

The Repast Suite is a family of advanced, free, and open source agent-based modeling and simulation platforms that have been under continuous development for over 15 years:

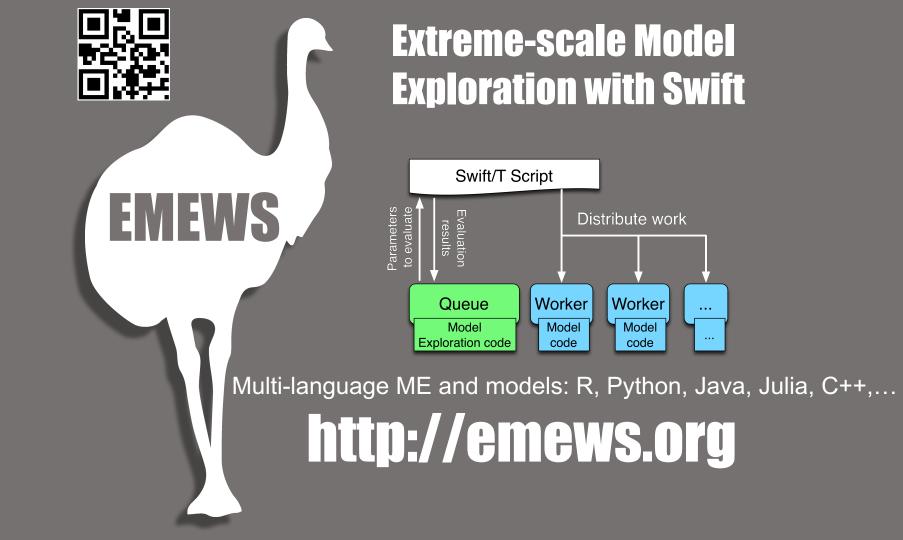
Repast Simphony 2.7, released on 30 September 2019, is a richly interactive and easy to learn Java-based modeling system that is designed for use on workstations and small computing clusters.

Repast for High Performance Computing 2.3.0, released on 26 November 2018, is a lean and expert-focused C++-based modeling system that is designed for use on large computing clusters and supercomputers.

Learn Repast using the Repast Tutorials.


Watch the Repast team discuss the present and future of ABM as part of the CoMSES 2018 Virtual Conference:






### IN SILICO LABORATORY WITH HIGH-PERFORMANCE COMPUTING









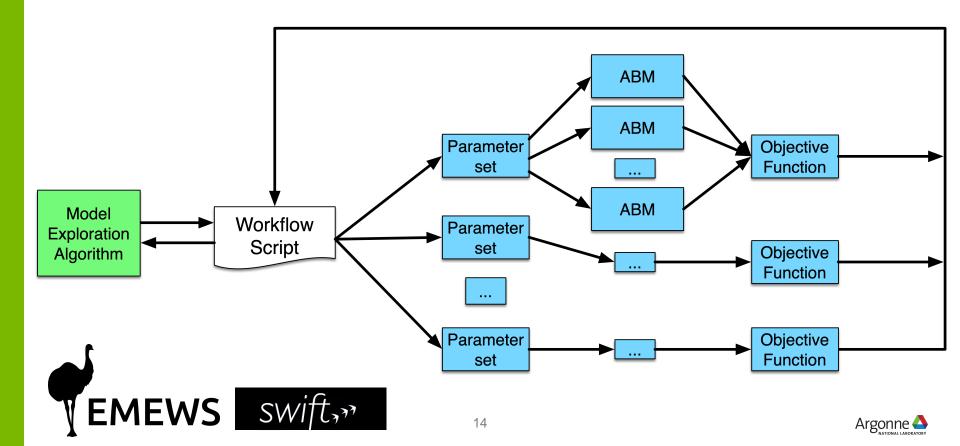


### **Extreme-scale Model Exploration with Swift**

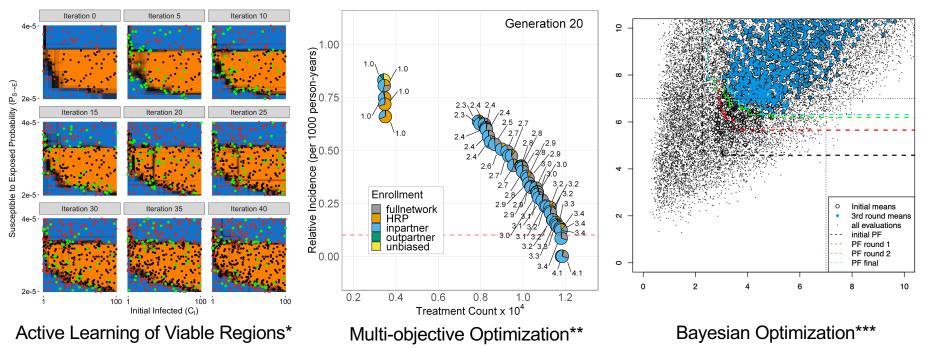
Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

#### FROM DESKTOP TO LARGE-SCALE MODEL EXPLORATION WITH SWIFT/T

Jonathan Ozik Nicholson T. Collier Justin M. Wozniak


Argonne National Laboratory 9700 S. Cass Ave. Argonne, IL 60439, USA Carmine Spagnuolo

Dipartimento di Informatica, ISISLab Università degli Studi di Salerno Via Giovanni Paolo II, 132, 84084 Fisciano SA Salerno, ITALY


http://emews.org

Ozik et at al. 2016. "From Desktop to Large-Scale Model Exploration with Swift/T." In *Proc. Winter Simulation Conference*. **Available at:** https://www.informs-sim.org/wsc16papers/019.pdf

### **High-performance Model Exploration Workflows**



### **Model Exploration**



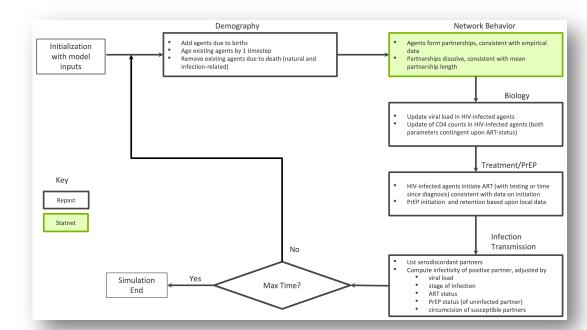
\* Ozik, Jonathan, Nicholson T. Collier, Justin M. Wozniak, Charles M. Macal, and Gary An. 2018. "Extreme-Scale Dynamic Exploration of a Distributed Agent-Based Model With the EMEWS Framework." IEEE Transactions on Computational Social Systems 5 (3): 884–95. https://doi.org/10.1109/TCSS.2018.2859189.

\*\* Tatara, Eric, Nicholson T. Collier, Jonathan Ozik, Alexander Gutfraind, Scott J. Cotler, Harel Dahari, Marian Major, and Basmattee Boodram. 2019. "Multi-Objective Model Exploration of Hepatitis C Elimination in an Agent-Based Model of People Who Inject Drugs." In 2019 Winter Simulation Conference (WSC), 1008–19. https://doi.org/10.1109/WSC40007.2019.9004747.

\*\*\* Ozik, Jonathan, Nicholson T. Collier, Justin M. Wozniak, Charles M. Macal, and Mickaël Binois. under review. "A Population Data-driven Workflow for Covid-19 Modeling and Learning." Gordon Bell Special Prize for HPC-Based COVID-19 Research, Supercomputing 2020.



### BUILDING AGENT-BASED MODELS OF RACIALIZED JUSTICE SYSTEMS (BARS)








### **BARS HIV MODEL**

- Combines ABM and network (ERGM) modeling
- Incorporates empirical data on micro-level behaviors and sexual network structure to aggregate population-level outcomes
- Includes processes that impact transmission, including demography, biology, ART, PrEP
- Impact of justice involvement on sexual networks and HIV prevention/care continuums





NIH/National Institute On Drug Abuse (R01DA039934): PIs John Schneider (UC), and Nina Harawa (UCLA), Kayo Fujimoto (UT Houston)

THE UNIVERSITY OF CHICAGO



# INTERSECTION OF HIV AND CRIMINAL JUSTICE INVOLVEMENT

- Black MSM are disproportionately impacted by HIV and criminal justice involvement
  - Frequent cycling between communities and criminal justice settings
- CJI can impact:
  - Social and sexual network stability
  - Employment and housing opportunities
  - Access to medical care
    - Resulting in cycles of socioeconomic marginalization and HIV transmission
- Agent-based models can be used to:
  - Provide insights to understand processes that drive HIV transmission
  - Evaluate interventions



### HYPOTHESIZED MECHANISMS BY WHICH JUSTICE INVOLVEMENT IMPACTS HIV TRANSMISSION

- Disruption in the HIV prevention and care continuum due to changes in postincarceration ART and PrEP engagement
- Impact of incarceration and release on partners of those with CJI due to altered tie formation and dissolution in sexual networks
- ABM can uncover emergent dynamics resulting from the intersection of CJIrelated changes in network composition and HIV prevention/care continuum engagement



### **BARS HIV MODEL POPULATION AND DATA SOURCES**

- Model population: 10,000 agents representing Black MSM ages 18-34 in the city of Chicago
- Data sources: Parameter values for sexual networks and behaviors and HIV/PrEP care continuum engagement were estimated from a population-based cohort of young Black MSM in Chicago (uConnect), calibration to local HIV surveillance estimates



#### **MODEL COMPONENTS AND PARAMETER VALUES**

| Process/component                                | Description                                                                                                               | Parameter values                                                                                                                                                           |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demography                                       |                                                                                                                           |                                                                                                                                                                            |
| Arrivals                                         | Agents enter model at constant rate at age 18                                                                             | Constant                                                                                                                                                                   |
| Aging                                            | Advance agent age by 1 unit per time step (day)                                                                           | Increase by 1 unit per day                                                                                                                                                 |
| Departures                                       | Due to age-specific all-cause mortality, HIV-related mortality, and deterministically due to aging out of model at age 35 | Age-specific mortality rates for Chicago                                                                                                                                   |
| Networks & Behaviors                             |                                                                                                                           |                                                                                                                                                                            |
| Mean partnership duration                        | Based on empirical data, specific to partnership type (main/casual)                                                       | Main: 512 days                                                                                                                                                             |
|                                                  |                                                                                                                           | Casual: 160 days                                                                                                                                                           |
| Momentary degree distribution                    | Distribution of number of sexual partnerships on a given day                                                              | Main: 0 (60%), 1 (38%), 2 (1%)                                                                                                                                             |
|                                                  |                                                                                                                           | Casual: 0 (61%), 1 (32%), 2 (7%)                                                                                                                                           |
| Partnership formation                            | Occurs at rate consistent with empirical data on momentary degree distribution for main and casual partnerships           | Derived                                                                                                                                                                    |
| Partnership dissolution                          | Occurs at rate determined by mean partnership duration for main and casual partnerships                                   | Derived                                                                                                                                                                    |
| Frequency of anal intercourse (AI)               | Based on empirical data, specific to partnership type (main/casual)                                                       | Main: 0.189<br>Casual: 0.053                                                                                                                                               |
| Condom use for AI in serodiscordant partnerships | Based on empirical data, specific to partnership type (main/casual)                                                       | Main: never: 26.1%; rarely: 4.7%; sometimes: 8.1%; usually:<br>8.7%; always: 52.3%.<br>Casual: never: 28.1%; rarely:1.4%; sometimes: 4.3%; usually:<br>5.4%; always: 60.7% |
| Transmission between<br>serodiscordant partners  | Dependent on condom use, viral load & stage of infection (HIV positive),<br>PrEP use (HIV negative)                       | Derived                                                                                                                                                                    |
| Infectivity multiplier based on viremia          | Increase in infectivity corresponding to one unit increase in log viral RNA                                               | 2.89                                                                                                                                                                       |

Khanna, Aditya S., John A. Schneider, Nicholson Collier, Jonathan Ozik, Rodal Issema, Angela di Paola, Abigail Skwara, Arthi Ramachandran, Jeannette Webb, Russell Brewer, William Cunningham, Charles Hilliard, Santhoshini Ramani, Kayo Fujimoto, Nina Harawa. 2019. "A Modeling Framework to Inform Preexposure Prophylaxis Initiation and Retention Scale-up in the Context of 'Getting to Zero' Initiatives:" *AIDS* 33 (12): 1911–22. <u>https://doi.org/10.1097/QAD.00000000002290</u>.

#### **MODEL COMPONENTS AND PARAMETER VALUES**

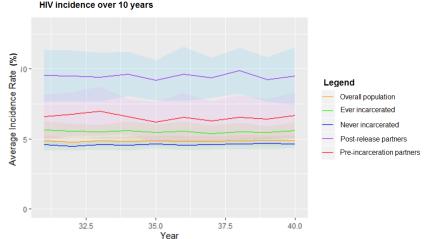
| Process/component                                | Description                                                                                                               | Parameter values                                                                                                                                                           |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demography                                       |                                                                                                                           |                                                                                                                                                                            |
| Arrivals                                         | Agents enter model at constant rate at age 18                                                                             | Constant                                                                                                                                                                   |
| Aging                                            | Advance agent age by 1 unit per time step (day)                                                                           | Increase by 1 unit per day                                                                                                                                                 |
| Departures                                       | Due to age-specific all-cause mortality, HIV-related mortality, and deterministically due to aging out of model at age 35 | Age-specific mortality rates for Chicago                                                                                                                                   |
| Networks & Behaviors                             |                                                                                                                           |                                                                                                                                                                            |
| Mean partnership duration                        | Based on empirical data, specific to partnership type (main/casual)                                                       | Main: 512 days<br>Casual: 160 days                                                                                                                                         |
| Momentary degree distribution                    | Distribution of number of sexual partnerships on a given day                                                              | Main: 0 (60%), 1 (38%), 2 (1%)<br>Casual: 0 (61%), 1 (32%), 2 (7%)                                                                                                         |
| Partnership formation                            | Occurs at rate consistent with empirical data on momentary degree distribution for main and casual partnerships           | Derived                                                                                                                                                                    |
| Partnership dissolution                          | Occurs at rate determined by mean partnership duration for main and casual partnerships                                   | Derived                                                                                                                                                                    |
| Frequency of anal intercourse (AI)               | Based on empirical data, specific to partnership type (main/casual)                                                       | Main: 0.189<br>Casual: 0.053                                                                                                                                               |
| Condom use for AI in serodiscordant partnerships | Based on empirical data, specific to partnership type (main/casual)                                                       | Main: never: 26.1%; rarely: 4.7%; sometimes: 8.1%; usually:<br>8.7%; always: 52.3%.<br>Casual: never: 28.1%; rarely:1.4%; sometimes: 4.3%; usually:<br>5.4%; always: 60.7% |
| Transmission between<br>serodiscordant partners  | Dependent on condom use, viral load & stage of infection (HIV positive),<br>PrEP use (HIV negative)                       | Derived                                                                                                                                                                    |
| Infectivity multiplier based on viremia          | Increase in infectivity corresponding to one unit increase in log viral RNA                                               | 2.89                                                                                                                                                                       |

Khanna, Aditya S., John A. Schneider, Nicholson Collier, Jonathan Ozik, Rodal Issema, Angela di Paola, Abigail Skwara, Arthi Ramachandran, Jeannette Webb, Russell Brewer, William Cunningham, Charles Hilliard, Santhoshini Ramani, Kayo Fujimoto, Nina Harawa. 2019. "A Modeling Framework to Inform Preexposure Prophylaxis Initiation and Retention Scale-up in the Context of 'Getting to Zero' Initiatives:" *AIDS* 33 (12): 1911–22. https://doi.org/10.1097/QAD.00000000002290.

#### MODEL COMPONENTS AND PARAMETER VALUES

| Process/component                                        | Description                                                           | Parameter values                                                                                                               |
|----------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Biology                                                  |                                                                       |                                                                                                                                |
| CD4 in uninfected                                        |                                                                       | 916 cells/µl                                                                                                                   |
| CD4 decline in HIV-infected but<br>untreated individuals |                                                                       | As per a linear model                                                                                                          |
| Acute & chronic stage duration<br>among HIV +            | Acute stage duration                                                  | Infection to peak viremia: 45 days<br>Peak viremia to viral set point: 45 days                                                 |
|                                                          | Chronic stage duration                                                | 3550 days                                                                                                                      |
|                                                          | Late stage (AIDS) duration                                            | 728 days                                                                                                                       |
| Viremia & viral set point                                | Level of Peak Viremia                                                 | 6.17 log                                                                                                                       |
|                                                          | Viral set point                                                       | 4.2 log                                                                                                                        |
|                                                          | Max. late stage viremia                                               | 5.05 log                                                                                                                       |
| Viral load/CD4 evolution after ART                       | Dependent on time since infection and ART use                         | CD4 count recovers by 15 cells/µl every month until first of pre-infection level                                               |
| initiation(HIV +)                                        |                                                                       | or 3 years                                                                                                                     |
|                                                          |                                                                       | Viral load among ART initiated declines to 200 copies/ml in 30 days                                                            |
| HIV prevention/care continuum                            |                                                                       |                                                                                                                                |
| HIV testing                                              | Age-specific annual testing frequencies among HIV                     | Age <26: 7.8% never test                                                                                                       |
|                                                          | negative/undiagnosed                                                  | Age ≥ 26: 2.3% never test                                                                                                      |
| ART initiation                                           | Based on local data on frequency and timing of ART initiation         | 0-1week (16.7%);1week-1month (29.8%); 1-3months (16.0%); 3-6                                                                   |
|                                                          | after positive diagnosis                                              | months(9.2%); 6months-1year (12.9%); 1-2years (8.4%); 3-5years (6.9%)                                                          |
| ART adherence                                            | Dependent on ART use, time-varying                                    | Never: 10%, Sometimes: 30%, Usually: 28%, Always: 32%                                                                          |
| Viral suppression                                        | Dependent on ART use, time-varying                                    | Derived from ART adherence                                                                                                     |
| PrEP uptake and retention                                |                                                                       |                                                                                                                                |
| Initiation of PrEP                                       | Based on local data on age-specific prevalence of PrEP use            | Age <26: 12.7%                                                                                                                 |
|                                                          | among young Black MSM                                                 | Age ≥ 26: 14.7%                                                                                                                |
| Duration/frequency of PrEP use                           | Based on local data on mean duration of PrEP retention                | 1 year (on average)                                                                                                            |
| PrEP adherence                                           | Based on data from national demonstration projects                    | Non-adherence: 0 pills/week (21.1%); low adherence: <2 pills/week (7.0%), moderate adherence: 2–3 pills/week (10.0%), and high |
| Khanna, Aditva S., John A. Schneide                      | r, Nicholson Collier, Jonathan Ozik, Rodal Issema, Angela di Paola, A | adherence: 4+ pills/week (61.9%)<br>Abigail Skwara, Arthi Ramachandran.                                                        |

Khanna, Aditya S., John A. Schneider, Nicholson Collier, Jonathan Ozik, Rodal Issema, Angela di Paola, Abigail Skwara, Arthi Ramachandran, Jeannette Webb, Russell Brewer, William Cunningham, Charles Hilliard, Santhoshini Ramani, Kayo Fujimoto, Nina Harawa. 2019. "A Modeling Framework to Inform Preexposure Prophylaxis Initiation and Retention Scale-up in the Context of 'Getting to Zero' Initiatives:" *AIDS* 33 (12): 1911–22. <u>https://doi.org/10.1097/QAD.00000000002290</u>.


### **ABM EXPERIMENTS**

- Quantify the impact of criminal justice involvement:
  - Population level HIV incidence
  - HIV incidence among justice involved individuals and their networks
- Evaluate interventions to reduce the impact of justice involvement on HIV transmission in different sub-populations
  - Examples:
    - Reduce post-release disruption in HIV/PrEP care (e.g., interventions to facilitate care engagement by reducing insurance, housing, or employment barriers)
    - Focused or enhanced PrEP and ART interventions for justice involved individuals and their networks



### **MODEL RESULTS**

- HIV incidence is higher among ever vs. never incarcerated
- HIV incidence is higher among partners of those released from jail (~9.5%) and those incarcerated (~6.25%) than HIV incidence in the general population (~5%)
- Partners of those with recent CJI history have elevated HIV incidence
  - May be priority candidates for PrEP interventions
- Suggests need for interventions to increase ART and viral suppression among HIV-positive individuals with CJI and increase PrEP/ART use in their networks





### **CFAR BCRT RESOURCES**

- Anna Hotton:
  - Methods in Epidemiology and Biostatistics
    - Epidemiologic study design, sampling, survey design
    - Causal inference methods
    - · Analytic methods for clustered and longitudinal data
    - Meta-analysis
- Jonathan Ozik:
  - Agent-based modeling
    - Model design
    - Modeling toolkits and implementation
    - High-performance computing
      - High-performance ABM
      - Use of high-performance computing for model exploration (of ABMs or other modeling methods)
- AH + JO:
  - Interdisciplinary collaborations between ABM and epidemiologists/clinicians/social scientists
  - Complex systems modeling of HIV and other associated topic areas
- Agent-based, network and complex systems modeling:
  - Can generate useful insights to understand complex processes that pose challenges to traditional epidemiologic and statistical methods
  - Is useful for contexts not conducive to traditional study designs (e.g., justice settings) and for evaluating interventions
    that would be logistically challenging or infeasible to implement in the real world
  - Modeling can identify priority subpopulations for intervention focus



